Nutrition is essential for maintaining the optimal health and performance of Warfighters. Failure to provide energy and nutrients at required levels results in measurable declines in cognitive and physical performance and, if chronic, may be associated with distinct nutritional deficiency disorders. The objective of this presentation is to detail the history of military nutrition and ration development as it applies to US Warfighters and to provide a contemporary prospective regarding current and future military nutrition research and practices.
Initial recognition of the importance of nutrition to Warfighter health in the US came in 1775 when the Continental Congress stipulated that enlisted members of the Continental Army should receive meat, milk, bread, and vegetables. Until World War I, personnel were provided with the garrison ration, a ration that was served to Warfighters in all circumstances, to include combat and garrison dining environments. During World War I, the first special purpose rations were developed and utilized, to include the reserve ration, the trench ration, and the emergency ration. The period prior to and during World War II was marked by the emergence of a series of field rations, as well as recognition that rations were required for the mountain, jungle, and desert environments. Currently, in field conditions, Warfighters are provided with the Meal, Ready-to-Eat (MRE), which has been designed to meet the nutritional requirements of Warfighters and includes over 20 menus and 150 individual components.
Contemporary studies in the area of US military nutrition research are focused on the development of ration and garrison paradigms that meet Warfighter requirements specific to operational demands. Examples include fortified snack items that can be provided before, during, and after operational missions for the optimization of physical and cognitive performance, resilience, and recovery. Other contemporary topics include meeting the nutritional needs of female Warfighters, to include preventing declines in iron status that may occur during physical training and optimizing vitamin D and calcium status in an effort to sustain bone health. Future approaches are likely to incorporate the nutritional requirements of individual Warfighters, including the contribution of genetic factors such as single nucleotide polymorphisms.
Funding source: US Army Medical Research and Materiel Command.
The views expressed in this abstract are those of the authors and do not reflect the official policy of the Department of Army, Department of Defense, or the U.S. Government.